Self-dual Representations of Division Algebras and Weil Groups: a Contrast

نویسندگان

  • DIPENDRA PRASAD
  • DINAKAR RAMAKRISHNAN
  • D. Ramakrishnan
چکیده

If ρ is a selfdual representation of a group G on a vector space V over C, we will say that ρ is orthogonal, resp. symplectic, if G leaves a nondegenerate symmetric, resp. alternating, bilinear form B : V ×V → C invariant. If ρ is irreducible, exactly one of these possibilities will occur, and we may define a sign c(ρ) ∈ {±1}, taken to be +1, resp. −1, in the orthogonal, resp. symplectic, case. Now let k be a local field of characteristic 0. The groups of interest to us will be G = GLm(D), where D is a division algebra with center k and index d, and the Weil group Wk. The local Langlands correspondence ([HT], [Hen1]) when used in conjunction with the Jacquet-Langlands correspondence ([Bdl]), gives a bijection π → σ, satisfying certain natural properties, in particular the preservation of ε-factors of pairs, between the discrete series representations of G and the set of irreducible representations σ of W ′ k of dimension n = md. Here W ′ k denotes Wk if k is Archimedean, and the extended Weil group Wk × SL2(C) if k is non-Archimedean. One calls σ the Langlands parameter of π. It is immediate from the construction that π is selfdual if and only if σ is. However, the local Langlands reciprocity is not a priori sensitive to the finer question of whether c(π) equals c(σ) or −c(σ). The main result of this paper is the following.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Weil-representations and associated Hecke-algebras

1 An algebra H(Gm) of double-cosets is constructed for every finite Weilrepresentation Gm. For the Clifford-Weil groups Gm = Cm(ρ) associated to some classical Type ρ of self-dual codes over a finite field, this algebra is shown to be commutative. Then the eigenspace-decomposition ofH(Cm(ρ)) acting on the space of degree N invariants of Cm(ρ) may be obtained from the kernels of powers of the co...

متن کامل

Division Algebras and Quantum Theory

Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat r...

متن کامل

Deligne–lusztig Constructions for Division Algebras and the Local Langlands Correspondence, Ii

In 1979, Lusztig proposed a cohomological construction of supercuspidal representations of reductive p-adic groups, analogous to Deligne–Lusztig theory for finite reductive groups. In this paper we establish a new instance of Lusztig’s program. Precisely, let X be the Deligne–Lusztig (ind-pro-)scheme associated to a division algebra D over a non-Archimedean local field K of positive characteris...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

On the Self-dual Representations of Division Algebras over Local Fields

Let k be a non-Archimedean local field of characteristic 0. Let D be a division algebra with center k and index n. The group D∗ is a locally compact group which is compact modulo the center. Its complex irreducible representations are finite dimensional. If π is an irreducible representation of D∗ which is self-dual, i.e., if π∨ denotes the dual of π, π∨ ∼= π, then there exists a D∗-invariant, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009